The load on a structure can be calculated by combining the dead load or weight of the structure itself, the live load that varies for different structures, the snow load, and the wind load.
In a simple gable roof, the rafter boards carry the live and dead loads that push both downward and outward against the top of the load-bearing walls. This horizontal outward thrust can be considerable. To resist this horizontal outward thrust, the International Residential Code calls for each pair of rafters to be securely connected to each other by a continuous ceiling joist, and for a structural ridge beam to be installed for roofs with a slope of less than 3:12 (see illustration below).
Where ceiling joists are not connected to the rafters at the top wall plate, joists connected higher in the attic shall be installed as rafter ties, or a continuous tie should be provided. Where ceiling joists are not parallel to rafters, rafter ties shall be installed. Where ceiling joists or rafter ties are not provided, the ridge formed by these rafters must be supported by a wall or girder.
The ends of ceiling joists should be lapped a minimum of 3 inches, or butted over bearing partitions or beams and toenailed to the bearing member. Where ceiling joists are used to provide resistance to rafter thrust, lapped joists shall be nailed together in accordance with Table R802.5.1(9) in the IRC. For example, if a house has a 4:12 slope, the rafters are on 16-inch centers, the snow load is 30 per square foot (psf), and the roof span is 28 feet, you need eight 16d common nails (or 40d box nails) at each rafter-heel joint connection. That's a lot of nails a home inspector can look for.
Cathedral Ceilings
Cathedral ceilings are popular in many homes, but they have special issues with the downward load on the rafters that push outward on the exterior walls. Open collar ties and ridge beams address many of these issues. The higher the tie is located, the less leverage is available to counteract the outward-thrust forces. Many cathedral ceilings often display indications of movement, such as cracked drywall. The most effective way to reduce outward thrust is to use a structural ridge beam.
Bottom Chord of a Truss
In a conventional roof truss, the bottom chord acts as a tension tie between the exterior walls. Alterations to installed trusses are not permitted. Cutting any truss, particularly at the bottom chord, destroys the structural integrity of the truss. If the inspector finds that the chord of a truss has been cut, he/she should recommend that a structural engineer be consulted.
The bottom chord of a truss should not be attached to an interior wall partition. Attaching the bottom chord of a truss to an inside wall can cause the web members designed for tension to become compression members. When the bottom chord is nailed to a top plate of an interior wall, a home inspector might observe cracking interior finishes at the corner of the finished wall and ceiling.
Lower One-Third
Older building codes permitted rafter ties to be installed very high above the top wall plate, as much as two-thirds the distance between the top plate and the ridge. The 2012 IRC now limits this to one-third the distance between the plate and the ridge. For example, if an unfinished garage has a roof with a 4:12 slope and the roof span is 24 feet, the rafter ties should be located no more than 16 inches up from the plate, according to modern building standards.
Tension
The roof framing mock-up below shows a standard collar tie. As the load is applied downward, tension in the collar tie is increased.
Compression
The illustration below shows a king post truss on posts. As the load is applied downward, compression is increased at the posts.
Bending Moment
A bending moment occurs when a force changes from a straight form into a curved or angular one. The illustration below shows a collar tie with rafters on top of conventionally framed walls. As the load is applied downward, the rafters go into a bending moment below the collar tie. This bending moment exerts outward thrust on the walls, making them out of plumb.